Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Phytochemistry ; 222: 114098, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38648960

ABSTRACT

Nine undescribed compounds, along with eight known compounds, were isolated from the stipes of Lentinus edodes. Their structures were established by extensive spectroscopic and circular dichroism analyses. The protective effects against Aß25-35-induced N9 microglia cells injury of these compounds were tested by MTT method, and the levels of apoptosis and ROS were detected by flow cytometry. In addition, the binding sites and interactions of compound with amyloid precursor protein were revealed using molecular docking simulations. These findings further establish the structural diversity and bioactivity of stipes of L. edodes, and provide an experimental basis for targeting Alzheimer's disease as a potential strategy.


Subject(s)
Amyloid beta-Peptides , Apoptosis , Microglia , Molecular Docking Simulation , Peptide Fragments , Microglia/drug effects , Microglia/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Peptide Fragments/pharmacology , Animals , Apoptosis/drug effects , Mice , Molecular Structure , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Dose-Response Relationship, Drug , Lentinula/chemistry , Cell Line
2.
Biomed Pharmacother ; 168: 115825, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37924791

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease for which there is a lack of effective therapeutic drugs. There is great potential for natural products to be used in the development of anti-AD drugs. P-coumaric acid (PCA), a small molecule phenolic acid widely distributed in the plant kingdom, has pharmacological effects such as neuroprotection, but its anti-AD mechanism has not been fully elucidated. In the current study, we investigated the mechanism of PCA intervention in the Aß25-35-induced AD model using gut microbiomics and serum metabolomics combined with in vitro and in vivo pharmacological experiments. PCA was found to ameliorate cognitive dysfunction and neuronal cell damage in Aß25-35-injected mice as measured by behavioral, pathological and biochemical indicators. 16S rDNA sequencing and serum metabolomics showed that PCA reduced the abundance of pro-inflammatory-associated microbiota (morganella, holdemanella, fusicatenibacter and serratia) in the gut, which were closely associated with metabolites of the glucose metabolism, arachidonic acid metabolism, tyrosine metabolism and phospholipid metabolism pathways in serum. Next, in vivo and in vitro pharmacological investigations revealed that PCA regulated Aß25-35-induced disruption of glucose metabolism through activation of PI3K/AKT/Glut1 signaling. Additionally, PCA ameliorated Aß25-35-induced neuroinflammation by inhibiting nuclear translocation of NF-κB and by modulating upstream MAPK signaling. In conclusion, PCA ameliorated cognitive deficits in Aß25-35-induced AD mice by regulating glucose metabolism and neuroinflammation, and the mechanism is related not only to restoring homeostasis of gut microbiota and serum metabolites, but also to PI3K/AKT/Glut1 and MAPK/NF-κB signaling.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Neurodegenerative Diseases , Mice , Animals , Amyloid beta-Peptides/metabolism , Glucose Transporter Type 1/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Neuroinflammatory Diseases , Neurodegenerative Diseases/pathology , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Glucose/metabolism , Brain
3.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4015-4026, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802769

ABSTRACT

The purpose of this study was to investigate the effect of aqueous extract of Corni Fructus on ß-amyloid protein 25-35(Aß_(25-35))-induced brain injury and neuroinflammation in Alzheimer's disease(AD) mice to provide an experimental basis for the treatment of AD by aqueous extract of Corni Fructus. Sixty C57BL/6J male mice were randomly divided into a sham group, a model group, a positive control group(huperizine A, 0.2 mg·kg~(-1)), a low-dose aqueous extract of Corni Fructus group(1.3 g·kg~(-1)), a medium-dose aqueous extract of Corni Fructus group(2.6 g·kg~(-1)), and a high-dose aqueous extract of Corni Fructus group(5.2 g·kg~(-1)). The AD model was induced by lateral ventricular injection of Aß_(25-35) in mice except for those in the sham group, and AD model mice were treated with corresponding drugs by gavage for 24 days. The behavioral test was performed one week before animal dissection. Hematoxylin-eosin(HE) staining was performed to observe the morphology of neurons in the hippocampal region. Flow cytometry was used to detect the apoptosis level of primary hippocampal cells in mice. ELISA kits were used to detect the levels of ß-amyloid protein 1-42(Aß_(1-42)) and phosphorylated microtubule-associated protein Tau(p-Tau) in mouse brain tissues. Immunofluorescence and Western blot were used to detect the expression of related proteins in mouse brain tissues. MTT assay was used to detect the effect of compounds in aqueous extract of Corni Fructus on Aß_(25-35)-induced N9 cell injury. Molecular docking was employed to analyze the interactions of caffeic acid, trans-p-hydroxy cinnamic acid, isolariciresinol-9'-O-ß-D-glucopyranoside, esculetin, and(+)-lyoniresinol with ß-amyloid precursor protein(APP), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α). Aqueous extract of Corni Fructus could improve the learning and memory abilities of Aß_(25-35)-induced mice by increasing the duration of the autonomous activity, the rate of autonomous alternation, the preference coefficient, and the discrimination coefficient, and reduce Aß_(25-35)-induced brain injury and neuroinflammation in mice by increasing the expression levels of interleukin-10(IL-10) and B-cell lymphoma-2(Bcl-2) in brain tissues, decreasing the expression levels of Aß_(1-42), p-Tau, IL-6, TNF-α, cysteine aspartate-specific protease 3(caspase-3), cysteine aspartate-specific protease 9(caspase-9), and Bcl-2-associated X protein(Bax), and decreasing the number of activated glial cells in brain tissues. The results of cell experiments showed that esculetin and(+)-lyoniresinol could improve Aß_(25-35)-induced N9 cell injury. Molecular docking results showed that caffeic acid, trans-p-hydroxy cinnamic acid, isolariciresinol-9'-O-ß-D-glucopyranoside, esculetin, and(+)-lyoniresinol had good binding affinity with APP and weak binding affinity with IL-6 and TNF-α. Aqueous extract of Corni Fructus could ameliorate cognitive dysfunction and brain damage in Aß_(25-35)-induced mice by reducing the number of apoptotic cells and activated glial cells in the brain and decreasing the expression level of inflammatory factors. Caffeic acid, trans-p-hydroxy cinnamic acid, isolariciresinol-9'-O-ß-D-glucopyranoside, esculetin, and(+)-lyoniresinol may be the material basis for the anti-AD effect of aqueous extract of Corni Fructus.


Subject(s)
Alzheimer Disease , Brain Injuries , Cornus , Mice , Male , Animals , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Cornus/metabolism , Neuroinflammatory Diseases , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6 , Aspartic Acid , Cysteine/therapeutic use , Molecular Docking Simulation , Mice, Inbred C57BL , Peptide Hydrolases , Disease Models, Animal , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...